
PHYSICAL REVIEW B 106, 035416 (2022)

Graphene nanoelectromechanical systems as valleytronic devices

Walter Ortiz ,1,2,* Nikodem Szpak ,3,† and Thomas Stegmann 2,‡

1Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62209 Cuernavaca, Mexico
2Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico

3Fakultät für Physik, Universität Duibsurg-Essen, 47057 Duisburg, Germany

(Received 4 February 2022; revised 31 May 2022; accepted 30 June 2022; published 21 July 2022)

We investigate electronic transport in graphene nanoelectromechanical systems, known also as graphene
nanodrums or nanomembranes. We demonstrate that these devices, despite their small values of strain between
0.1% and 1%, can be used as efficient and robust valley polarizers and filters. Their working principle is based
on the pseudomagnetic field generated by the strain of the graphene membrane. They work for ballistic electron
beams as well as for strongly dispersed ones and can be also used as electron beam collimators due to the
focusing effect of the pseudomagnetic field. We show additionally that the current flow can be estimated by
semiclassical trajectories which represent a computationally efficient tool for predicting the functionality of the
devices.
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I. INTRODUCTION

Graphene, the wonder material of the 21st century, not only
features pseudorelativistic electrons with conical dispersion
relation but also facilitates two valleys located at the K+ and
K− points of the Brillouin zone. This degree of freedom,
interpreted as the valley spin of the electrons, suggests a new
kind of electronics, named valleytronics [1], in which the
valley spin is processed instead of the charge or the real spin.
In recent years, several proposals have been made to create,
manipulate, and detect valley-polarized currents in graphene
[2–11], and even the idea of valley transistors has been put for-
ward [12]. Although some impressive experimental progress
has been made recently [13–17], valleytronics is still in its
infancy because it remains challenging to control the valley-
polarized currents [18].

In this paper, we show that graphene nanoelectromechan-
ical systems (GrNEMS) [19–22] can be used to construct
efficient and robust valley polarizers. We consider a graphene
membrane that spans a cavity, as shown in Fig. 1. The mem-
brane can be deformed in the unsupported region by an
external stimulus, for example, the electric field of metallic
gates [23–31]; by pressurized air [32,33]; or by periodic driv-
ing at the membrane eigenfrequencies [29,34] and forms a
nanoelectromechanical system. Mechanical driving leads to
membrane oscillations which, due to the ultrahigh electron
mobility in graphene, can be treated as adiabatic changes
in the background geometry in which the electronic current
adjusts immediately to the quasistatic deformations [35–37].
Optical driving of the graphene membrane is also possible,
but this leads in general to very small deformations [38].
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The membranes can be sealed (or clamped) [26,39,40] and
therefore are also called graphene nanodrums [29,30]. The
deformation of the graphene membrane generates strain in the
material. Its gradient induces a strong pseudomagnetic field
which acts with opposite signs on the electrons in the two
valleys [41–43] and thus can be used to spatially separate
valley-polarized currents.

The appearance of strong pseudomagnetic fields in de-
formed graphene was previously utilized to propose valley
filters [2–10], but to the best of our knowledge these devices
have not yet been realized experimentally. One of the main
obstacles is the challenge to fabricate properly deformed or
strained graphene sheets, despite certain recent progress [44].
We demonstrate that graphene nanoresonators with already
low strain values of the order of 0.1%–1% can be used to
construct efficient valley polarizers. Even lower strain values
can be used due to the possibility to place various resonators in

FIG. 1. Sketch of the investigated device. A graphene membrane
is deposited on an insulating substrate with a circular cavity (blue
shaded region). The graphene membrane is clamped at the edges
using, for example, photoresist (green shaded ring), forming a nan-
odrum. The graphene membrane is deformed by the pressure of
an external gas or the electric field of metallic gates (not shown).
Current is injected and detected at the edges of the system (golden
bars).
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series [45–47]. Moreover, we show that the proposed devices
can be applied to collimate and direct electrons and thus
control the electronic transport.

II. MODEL OF THE GRAPHENE MEMBRANE

We consider graphene membranes with a size of about
300 nm × 600 nm, which are deposited on an insulating sub-
strate with a cavity (see Fig. 1). We assume that the membrane
is clamped at the edges of the cavity, for example, by means
of photoresist [26,39,40]. The graphene membrane is modeled
by the typical first nearest neighbor tight-binding Hamiltonian

H = −t0
∑
i, j

|iA〉 〈 jB| + H.c. (1)

|iA/B〉 indicate the atomic states localized on the carbon atoms
at positions ri in sublattices A and B, respectively. The
sum runs over nearest neighbor atoms, which are separated
by a distance of d0 = 0.142 nm and coupled with energy
t0 = 2.8 eV. The minor effects of the substrate on the
graphene membrane are neglected.

First, we consider circular cavities of radius r0 where the
deformation of the graphene membrane is given by the circu-
lar drum modes,

hmn(r, φ) =
{

a Jm(λmnr/r0) cos(mφ) if r � r0,

0 otherwise, (2)

where Jm is the mth Bessel function of the first kind and
λmn is the nth zero of Jm. The amplitude of the deformation
is controlled by the parameter a. Second, we consider also
rectangular-shaped cavities of size L = Lx × Ly with the de-
formation given by the rectangular drum modes,

hmn(x, y) =
{

a sin(n x/Lx ) sin(m y/Ly ) if x, y ∈ L,

0 otherwise. (3)

The deformations enlarge the distance of neighboring carbon
atoms and weaken their coupling. This modification is, to
good approximation, described by

ti j
∼= t0 exp(−β δi j ), (4)

where δi j = |ri−r j |−d0

d0
and β = 3.37 [6,48,49]. These defor-

mations are motivated by the classical membrane modes and
could be generated by mechanical periodic driving of the
system at the corresponding eigenfrequencies [29,34] or by
pressurized air [32,33].

In both cases, the real atomic structure of graphene can
slightly deviate from our model, in which we assume a simple
lift of atoms according to z = h(x, y), creating strong strain at
the boundary where the slope of h is the largest. A structural
relaxation process using molecular dynamics may be applied
to the deformed membrane in order to get closer to the ex-
perimental situation. We plan to address this point in future
work.

III. ELECTRONIC TRANSPORT IN GRAPHENE

A. The Green’s function method

The current flow in GrNEMS is studied by means of the
Green’s function method. Here we summarize the essential

equations of this method, as detailed introductions can be
found in various textbooks [50,51].

The Green’s function of the system is given by

G(E ) = (E − H − �)−1, (5)

where E is the energy of the injected electrons and H
is the tight-binding Hamiltonian (1). The self-energy � =
−i

∑
i∈edges |i〉 〈i| is a complex potential at the edges of the

system which absorbs the electrons and suppresses finite-size
effects.

Electrons are injected and detected through contacts at the
edges of the system; see the golden bars in Fig. 1. We use two
different models for the injection of the electrons. In the first
one, the electrons are injected as plane waves represented by
the inscattering function

�in
pw =

∑
i, j∈contact

A(ri )A(r j )ψ
∗
j (k)ψi(k) |i〉 〈 j| , (6)

where the sum runs over the carbon atoms at the contact (see
Fig. 1). ψi(k) are the plane-wave eigenstates of graphene’s
Dirac Hamiltonian [see (14) below],

ψi(k) =
{

c−ei(k+K− )ri + c+ei(k+K+ )ri i ∈ A,

s c−ei(k+K− )ri+iφ − s c+ei(k+K+ )ri−iφ i ∈ B,
(7)

where φ = arg(ikx + ky). The parameters c± control the oc-
cupation of the two K± valleys. In the following, we consider
that for the injected electrons both valleys are fully mixed, i.e.,
c± = ±1/2. The function

A(r) = e−(k·(r−r0 )/w0 )2

(8)

gives the injected current beam a Gaussian profile. The pa-
rameters r0 and w0 control the position and width of the
beam. The advantage of this model is that it allows us to
inject narrow electron beams with given energy, momentum,
and valley polarization. Such beams are ideal to compare the
current flow with semiclassical trajectories and phenomena
from optics [4,42,52–54].

In the second case, we will use the so-called wideband
model,

�in
wb =

∑
i, j∈contact

−i η |i〉 〈 j| , (9)

where the injecting contact is characterized by a constant,
energy-independent surface density of states, DOS ∝ η =
const. In the following we set η = t0, although our results
do not depend crucially on that choice. Through this contact
unpolarized electrons of energy E are injected without a pre-
cisely specified momentum, leading to a strongly divergent
electron beam. This generic model represents well experimen-
tal situations where it is not precisely known how the electrons
are entering the nanosystem via the contacts.

Finally, the current flowing between the atoms at positions
ri and r j is calculated by

Ii j = Im[ti j (G �in G†)i j]. (10)

This bond current is then averaged (or coarse grained) over
the six edges of the carbon hexagons.
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B. Valley polarization

The valley polarization of a state |φ〉 characterizes to what
degree this state occupies the two valleys K± in graphene. It
can be calculated by the projection P (k) = | 〈ψ (k)|φ〉 |2 onto
the graphene eigenfunctions (7). Within the Green’s function
approach this projection reads [3,4]

Pi(k) = 〈ψ (k)|G �in G†|ψ (k)〉Ai
. (11)

It is calculated over a finite region Ai of the system (see, for
example, the gray shaded regions in Fig. 4 below) in order
to assess the valley polarization locally. The spectral density
Pi(k) is integrated around the valleys

P±
i =

∫
k∈K±

d2k Pi(k), (12)

and the valley polarization is given by

Pi = P+
i − P−

i

P+
i + P−

i

. (13)

For Pi = ±1 the electrons are localized exclusively at the K±

valleys and hence are completely valley polarized, whereas
for Pi = 0 they are completely unpolarized.

IV. CONTINUOUS MODEL OF THE GRAPHENE
MEMBRANE

A. Dirac equation for deformed graphene

At low energies, where the electron wavelength is larger
than the lattice constant, the discrete tight-binding Hamil-
tonian (1) can be approximated by the continuous Dirac
Hamiltonian [42,55–57]

HD = ih̄vF σ ae l
a (x)[∂l − iK±

l (x)] (14)

describing relativistic massless fermions. Here vF = 3t0d0/2h̄
is the Fermi velocity of the electrons, and σ a (a = 1, 2) are the
Pauli matrices. The local frame vectors

ea(x) = [1 − βε̂(x)]ea (15)

describe the curvature of the membrane and are determined
by the strain tensor

εi j = 1
2 ∂ih(x)∂ jh(x) (16)

multiplied by the factor β > 1. Hence, the effective defor-
mation for the electrons is magnified by β but is otherwise
identical to the real geometry of the deformed graphene mem-
brane.

Due to the deformation, the two valleys, located in pris-
tine graphene at K± = (0,± 4π

3
√

3d0
), become a function of the

position inside the device [41,58],

K±(x) = K± ± β

2
(−2εxy, εyy − εxx ). (17)

This function can be interpreted formally as a vector potential,
and its curl causes an effective pseudomagnetic field

B±(x) = ±β

2
[∂x εyy(x) − ∂x εxx(x) + 2∂yεxy(x)], (18)

which is perpendicular to the graphene plane. In contrast
to a true magnetic field, the pseudomagnetic field acts with

FIG. 2. Current flow in a pristine graphene membrane. The elec-
trons are injected at the bottom armchair edge. The orientation of
the graphene lattice is indicated by the small hexagon in the bottom
left. The current vector field is given by the yellow arrows; its norm
is given by the red shading. Solid blue lines and dashed black lines
are semiclassical trajectories for electrons in valleys K+ and K−, re-
spectively. (a) Ballistic beamlike current propagation is observed for
electrons injected by the plane-wave model at energy E = 200 meV.
(b) In the case of the generic wideband model the electrons, injected
at a slightly lower energy of E = 170 meV, are dispersed strongly.

opposite signs in the two different valleys, preserving the
time-reversal symmetry of the system. This sign change of
the pseudomagnetic field will be used to separate spatially the
electrons from different valleys.

B. Current flow lines in the geometric optics approximation

For smooth deformations on a scale larger than the elec-
tron wavelength the geometric optics approximations can be
applied to the Hamiltonian (14). In our previous work [42], we
showed that in this case the current flow can be predicted by
the semiclassical trajectories of relativistic massless fermions,

dvi

dτ
= −�i

klv
kvl + √

g gi jε jk vkB±, (19)

where vi(τ ) = dxi(τ )/dτ is the “velocity.” The first term on
the right-hand side takes into account the curvature through
the Christoffel symbols

�i
kl = 1

2 gi j (∂kg jl + ∂l gk j − ∂ jgkl ). (20)

The second term describes the electromagnetic force, where
gi j = δi j − 2βεi j (x) are the effective (inverse) metric and εi j

is the Levi-Civita symbol in two dimensions. The calculation
of these trajectories is computationally much less demanding
than the quantitative quantum approach and independent of
the system size. Therefore, it provides a useful tool to estimate
the current flow in deformed graphene nanostructures.
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FIG. 3. Different modes (n, m) of a circular graphene nanodrum. The deformation profiles are shown in the top row. The resulting
strain and pseudomagnetic fields can be found in the middle and bottom rows, respectively. The different drum modes lead to very distinct
pseudomagnetic field patterns. The maximal values of the pseudomagnetic field amount to B±

max ∼ 1 T.

V. RESULTS

We begin our discussion with Fig. 2, which shows the
current flow in a pristine sheet of graphene. Electrons of
energy E = 200 meV are injected at the bottom edge, which
has the armchair shape. The current vector field is visualized
by the yellow arrows, and its norm, the current density, is
shown by the red shading.1 On the left-hand side, the electrons
are injected by means of the plane-wave model, resulting in

1As the current shows some rare peaks, its maximum value is
defined here as four standard deviations above the mean.

a ballistic beamlike propagation through the device. On the
right-hand side, the generic wideband model is used for the
injection of the current, which leads to a much more dispersed
current flow. In this case, the electrons are partially reflected
at the lateral edges (despite the absorbing contacts), leading to
a ripple pattern in the current density due to interference. The
current flow in graphene membranes will be described by one
of the two models, depending on the experimental realization
of the contacts.

We study here only static configurations since any
graphene membrane dynamics (with oscillation frequencies
ranging between 10 and 100 MHz for probes of size of ∼1 μm
[59,60]) is so much slower than the timescale dictated by the
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FIG. 4. Current flow in different drum modes (n, m) of circular graphene nanoresonators with a maximum strain ranging between 0.13%
and 0.2%. The electrons, injected at E = 200 meV by the plane-wave model, are split into three beams. The black and blue solid lines are
semiclassical trajectories for electrons in the K+ and K− valleys, respectively. These trajectories agree qualitatively with the current flow
patterns and can be used to estimate the electronic transport in the device. The spectral densities Pi are calculated within the gray shaded
rectangles and are shown for the (2,0) mode on the right. The resulting polarizations are given in percentages within the gray shaded rectangles
and show that an initially unpolarized current is split into three valley-polarized beams.

electron mobility (∼1 THz) that it can be treated as adiabatic
change in the geometry to which the electronic current adjusts
immediately [35–37].

A. Circular graphene nanodrums

We proceed with membranes deposited on a circular cavity
with a diameter of 280 nm, forming a GrNEMS or graphene
nanodrum. Figure 3 shows the deformation profile (top row),
the strain (middle row), and the pseudomagnetic field (bottom
row) for various drum modes (n, m). Figure 3 demonstrates
that the shape of the pseudomagnetic field, which is perpen-
dicular to the graphene sheet, changes drastically with the
different drum modes.

The corresponding current flow pattern for electrons in-
jected by the plane-wave model at energy E = 200 meV is
shown in Fig. 4. It can be observed that the ballistic current
is separated into three beams; two are deflected to the edges,
while one goes through the center of the drum. The spectral
density Pi(k) of these current beams is calculated in the gray
shaded rectangular regions and is shown in Fig. 4 (right) for
the (2,0) mode. Close to the injecting source contact at the
bottom edge, we observe small red dots in all six edges of
graphene’s Brillouin zone, which indicate that the electrons
occupy both valleys and the current is unpolarized. In the
regions at the upper edge, we observe red dots only at three
equivalent Dirac points, proving that the current is fully valley
polarized. Note that the dots in the central and in the outer
regions are located in different valleys, and thus, the current
in these regions is polarized in the opposite way. The spectral
density, integrated around the different valleys, leads to the
polarization Pi, which is given in percentages in the rectan-
gular regions of the current flow patterns. In general, we find
that an initially unpolarized current is converted to a highly

valley polarized current Pi > 85%, which demonstrates
clearly that the proposed device can be used as a valley po-
larizer or valley filter. The strain of the graphene membrane in
the different drum modes lies in the range of 0.13% to 0.2%.
This is an important feature of the proposed device because
the experimentally achievable strain values are limited to a
few percent or to values that are even lower, depending on
the setup [32,33]. Note that close to the source contact small
spurious valley polarizations of a few percent can appear
due to the reflections of the electrons at the system edges,
which are not completely suppressed by the complex damping
potential.

The electron energy E = 200 meV corresponds to the
Fermi wavelength λF = 3πt0d0/E = 19 nm, which is longer
than the interatomic distances but shorter than typical length
scales of the resonator modes. This makes it possible to esti-
mate the current flow by means of semiclassical trajectories,
which are given by the solution of the differential equa-
tion (19) and indicated in Fig. 4 by the solid blue and black
curves for electrons from the K+ and K− valleys, respectively.
These trajectories follow qualitatively the quantum current
densities. Their behavior can be understood largely by taking
into account the Lorenz force due to the pseudomagnetic
field (see Fig. 3) acting on the electrons of different valleys
with opposite signs. This Lorenz force focuses the electrons
from one valley on a narrow beam that passes straight though
the resonator, while the electrons from the other valley are
deflected towards the edges. The trajectories also allow us
to understand qualitatively the observed valley polarizations.
Note that in the (1,1) mode the sign of the polarization is
reversed compared to the other modes.

In the case of electron injection by the wideband model
(see Fig. 5), the current flow is much more dispersed because
in this model the electron energy is fixed (E = 170 meV)
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FIG. 5. Current flow for electrons injected at E = 170 meV by the wideband model. The maximal strain is in between 0.53% and 0.66%.
The current is much more dispersed compared to the plane wave model, but part of the current is focused onto a narrow valley-polarized beam
that passes through the center of the nanodrum. The current flow pattern agrees qualitatively with the semiclassical trajectories of strongly
dispersive electrons. The spectral densities within the gray shaded regions of the (2,0) mode are shown on the right. The resulting polarizations
are indicated in percentages.

but the momentum vector is unspecified. Nevertheless, we
observe that part of the current density is deviated towards
the edges, while another fraction of the current is focused on a
beam that goes through the center of the resonator. The current
flow can be understood qualitatively by the semiclassical tra-
jectories if the initial spreading of the injected electron beam
is taken into account. The valley polarization calculated at the
bottom and top of the device confirms that valley polarization
of up to 84% can be obtained, which is a surprisingly high
value considering that the electrons are strongly dispersed and
partially reflected at the system edges. The strain values used,
which range between 0.53% and 0.66%, are slightly higher
because stronger pseudomagnetic fields are required to focus
the dispersive electron beam. The reason for slightly lowering
the electron energy is to compensate the need for stronger
pseudomagnetic fields and also to demonstrate the working
principle for another parameter set.

We have selected the device parameters—resonator size,
strain, and electron energy—to demonstrate its functionality
at low pseudomagnetic fields (B±

max ∼ 1 T) and low electron
energies (E ∼ 200 meV). These parameters not only permit
numerical studies but can also be established experimentally.
The device works not only for these specific parameters but
within a rather ample parameter regime, as proven by means
of Fig. 6, which shows an extended region of valley polariza-
tion >80%. Moreover, from the structure of (19) it follows
that the device properties remain unchanged when the size of
the resonator and the amplitude a of the resonator modes [see
(2) and (4)] are increased by the factor α, leaving the strain
unchanged. As the amplitude is rather limited in experiments
we can alternatively keep it constant, leading to a decrease in
strain and pseudomagnetic field, which can then be compen-
sated by decreasing the electron energy by the factor α2.

The device can be further improved by placing several
nanoresonators in series, generating a valley-polarized and

collimated current beam (see Fig. 7). Note that in Fig. 7 the
device is rotated by 90◦ but the current is still injected at the
armchair edge. Such series of resonators could also be used to
polarize electron beams of higher energy [61].

The time-dependent strain in the nanoresonators will gen-
erally also induce a pseudoelectric field E± = −∂t K± [62,63].
Although the small strain values in the proposed device are
capable of creating strong pseudomagnetic fields B±

max ∼ 1 T,
the pseudoelectric fields E±

max ∼ 40 V/m, even for (an almost
unrealistic) high resonance frequency of 1 GHz, lead to pseu-
dovoltages of only a few microvolts across the device, which
do not change the current flow and can be neglected.

FIG. 6. Valley polarization as a function of the electron energy
and strain for a circular graphene nanoresonator in the (1,0) mode.
The valley polarization is calculated within the central region at the
top edge. The small black dot indicates the parameters used in Fig. 4.
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FIG. 7. Current flow in a device of three graphene nanodrums in series. The membrane is in the (1,0) mode with a maximum strain
of 0.63%. The strongly dispersed electron beam, injected at the left edge, is strongly collimated by the resonator, demonstrating the rich
functionality of nanodrum devices.

B. Rectangular graphene nanoresonators

We continue our study with rectangular graphene nanores-
onators. The deformation, strain, and pseudomagentic field
patterns are shown in Fig. 8 for two different drum modes.
Most notable is the fact that for an aspect ratio of Ly/Lx =√

3 m/n the pseudomagnetic field is constant in the y

direction. This property, which can be proven easily by using
Eqs. (4), (16), and (18), is rather stable and only lost slowly
when the aspect ratio changes.

The current flow patterns for the plane-wave model of
injection are shown in Fig. 9. In the case of the (1,1) mode,
where a maximum strain of 1.5% is present, the electrons

FIG. 8. Deformation profile (first column), strain (second column), and pseudomagentic field (third column) of the (n, m) = (1, 1) and
(2,2) modes of a rectangular graphene nanoresonator. For an aspect ratio of Ly/Lx = √

3 m/n the pseudomagnetic field is independent of the
y coordinate and has a stripelike shape. The alternating sign of the pseudomagnetic field in the strips is optimal to confine valley-polarized
electron beams. The shape of the pseudomagnetic field is rather robust against variations of the aspect ratio; compare the third, fourth, and fifth
columns.
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FIG. 9. Current flow in the (n, m) = (1, 1) and (2,2) modes of
a rectangular graphene nanoresonator. Electrons are injected at an
energy of 200 meV by the plane-wave model. The edges of the
resonator are indicated by black horizontal lines and the vertical
system edges. The valley polarization is calculated and indicated
within the gray shaded rectangular regions. The generation of narrow
valley-polarized electron beams is observed, and they are stable if
the aspect ratio is changed from its optimal value Ly/Lx = √

3 m/n.
The semiclassical trajectories, indicated for the electrons in different
valleys by the solid blue and black curves, follow qualitatively the
current density. In particular, their crossing points agree with the
focusing points of high current density.

from one valley are focused on a narrow beam in the cen-
ter, while the electrons form the other valley are deviated
towards the edges of the system. Note that these electrons are
partially reflected at the edges, indicating that the absorption
of the complex potential is not perfect. In the case of the
(2,2) mode a maximum strain of 0.24% is applied, and the
electrons are split into three narrow beams. The semiclassical
trajectories agree well with the current flow. Most notably,
the crossing points of the trajectories agree with the focusing
points of the current density. The valley polarizations, mea-
sured and indicated in the gray rectangular regions in Fig. 9,
demonstrate that highly valley polarized electron beams are
generated with polarizations above 80%. Moreover, the cur-
rent flow patterns and valley polarizations persist when the
aspect ratio is changed from its optimal value. The striplike
pseudomagnetic fields favor the generation of narrow beams
of valley-polarized electrons. In the case of the (1,1) mode
electrons from one valley are sorted out towards the edges,
while in the (2,2) mode three valley-polarized beams are
obtained.

FIG. 10. Current flow for electrons injected by the wideband
model at E = 170 meV. Part of the current density is confined in
the central region of the device. Valley polarizations of about 90%
in the (1,1) mode and 70% in the (2,2) mode are found. Due to
the spreading of the electron beam stronger pseudomagnetic fields
are necessary, and as a consequence, higher strain values of 4.4%
and 0.35%, respectively, are needed. The semiclassical trajectories
follow qualitatively the current density. Most impressively, their
consecutive crossing points match the focusing points of the current
density.

When we proceed with the wideband model of electron
injection (see Fig. 10), the current becomes more dispersed (as
in the case of circular nanodrums), but part of it is confined in
a narrow region in the center of the device. This current shows
valley polarizations of about 90% and 70% in the (1,1) and
(2,2) modes, respectively. However, they go along with higher
strain values of 4.4% and 0.35% for the two modes because
stronger pseudomagnetic fields are necessary to focus the
dispersed current flow and valley polarize the electrons. The
semiclassical trajectories agree well with the current density.
In particular, the consecutive crossing points of the trajectories
match precisely the focusing points of the current density.

C. Current injection at the zigzag edge

In all devices presented in the previous sections the current
has been injected at the armchair (bottom) edge. It might be
tempting to inject the current also at the zigzag (left) edge and
expect a clear separation of the valley-polarized beams. Due to
the even number of stripes with nonvanishing pseudomagnetic
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FIG. 11. Current flow for electrons injected at the left zigzag
edge at E = 200 meV using the plane-wave model. The abrupt
change in the strain at the left edge of the resonator (see Fig. 8) gener-
ates formally a singular pseudomagnetic field (along the black line)
and leads to a sudden current splitting, for which the semiclassical
trajectories must be specially adjusted.

field B±(x) the beams should finally become almost parallel;
see the semiclassical trajectories in Fig. 11.

However, the situation at the zigzag boundary is very dif-
ferent from the armchair case. The pseudomagnetic vector
potential K±(x) is always parallel to the zigzag direction
(i.e., has only a y component) and has a jump at the zigzag
boundary which leads to formally infinite pseudomagnetic
field B±(x). This forces the plane wave to abruptly change its
propagation direction, depending on the valley polarization.
At the same time, the strain tensor εi j (x) has a jump, too.
Since these effects happen on a small scale, the continuous
approximation can break down, and the current flow can differ
significantly from the semiclassical trajectories. Nevertheless,
after adjusting the trajectories to the kicklike velocity change,
we find a quite good agreement between the quantum and
semiclassical currents (see Fig. 11). The abrupt change in
the strain is an artifact of our simple model of the graphene
nanodrum. In order to obtain a more realistic picture one
should consider smoother edges of the membrane. The above-
mentioned relaxation of the atomic structure should modify

the strain distribution exactly in this direction. This point
is the focus of our ongoing research and will be addressed
elsewhere.

VI. CONCLUSIONS

We have demonstrated that GrNEMS can be used as ef-
ficient valley polarizers. In the case of circular graphene
nanodrums strain values already between 0.1% and 0.6% lead
to highly polarized currents. The device works for the plane-
wave model, where the electrons are injected as a narrow
ballistic beam, as well as for the wideband model, where the
injected current is strongly dispersive. In the latter case, higher
strain values and thus stronger pseudomagnetic fields are able
to not only valley polarize the electrons but also focus them to
a narrow beam acting as a beam collimator.

In the case of rectangular nanoresonators, we found that
a special aspect ratio of Ly/Lx = √

3 m/n for the drum
mode (m, n) leads to a stripelike pseudomagnetic field, con-
stant along the y direction, which optimally confines the
valley-polarized electrons beams. The semiclassical trajecto-
ries agree well with the current calculated by means of the
Green’s function method. Most impressively, their crossing
points agree precisely with the focusing points of the cur-
rent density. These trajectories represent a computationally
efficient tool to predict the current flow in graphene nanos-
tructures, especially in larger systems in which a direct lattice
simulation is no more possible. These trajectories allowed us
to predict the device functionality even in larger resonators.

For the experimental realization of the proposed device,
high-quality samples of graphene will be favorable. Lattice
imperfections, finite temperature, and even the substrate will
reduce the mean free path and the mobility of the electrons,
but our device should be rather robust against these per-
turbations because the pseudomagnetic field not only valley
polarizes the electrons but also refocuses them (see Figs. 4
and 7). A possible obstacle to fabricate the device which also
exists in other proposals based on the pseudomagnetic field
is the fact that the pseudomagnetic field is not rotationally
invariant and thus the orientation of the graphene lattice with
respect to the contacts has to be controlled during fabrication.
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